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Abstract 
Although vaccine development is being undertaken at a breakneck speed, there is currently no effective antiviral drug for 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19. Therefore, the present study aims to 
explore the possibilities offered by naturally available and abundant flavonoid compounds, as a prospective antiviral drug 
to combat the virus. A library of 44 citrus flavonoids was screened against the highly conserved Main Protease (Mpro) of 
SARS-CoV-2 using molecular docking. The compounds which showed better CDocker energy than the co-crystal inhibitor of 
Mpro were further revalidated by flexible docking within the active site; followed by assessment of drug likeness and toxicity 
parameters. The non-toxic compounds were further subjected to molecular dynamics simulation and predicted activity (IC50) 
using 3D-QSAR analysis. Subsequently, hydrogen bonds and dehydration analysis of the best compound were performed to 
assess the binding affinity to Mpro. It was observed that out of the 44 citrus flavonoids, five compounds showed lower binding 
energy with Mpro than the co-crystal ligand. Moreover, these compounds also formed H-bonds with two important catalytic 
residues His41 and Cys145 of the active sites of Mpro. Three compounds which passed the drug likeness filter showed stable 
conformation during MD simulations. Among these, the lowest predicted IC50 value was observed for Taxifolin. Therefore, 
this study suggests that Taxifolin, could be a potential inhibitor against SARS-CoV-2 main protease and can be further ana-
lysed by in vitro and in vivo experiments for management of the ongoing pandemic.
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Introduction

The COVID-19 pandemic caused by SARS-CoV-2 has 
emerged as a global threat affecting more than 17 million 
people globally [1]. The rapid and dynamic spread of the dis-
ease has baffled healthcare officials across the world. With 
668,910 global mortality till date (6th August 2020), and 
with no effective treatment available, the quest for discover-
ing a drug or vaccine against SARS-CoV-2 has accelerated 
[1]. In this crisis, a renewed interest in traditional phytome-
dicinal plants or natural compounds has garnered significant 
attention due to its medicinal properties, low toxicity and 
adverse effects [2, 3]. At present, antagonistic approach by 
blocking the integral replication system of SARS-CoV-2 
is being considered as one of the effective antiviral thera-
peutic strategies. SARS-CoV-2 is a positive sense single 
stranded RNA virus. Like any other virus, it uses the host 
cell machinery to translate its large polyprotein necessary 
to procreate. However, to be functional, the polyprotein has 
to be cleaved by viral main protease (Mpro) and other papain 
like proteases. As inhibition of Mpro would stop viral replica-
tion, this enzyme has become one of the best characterized 
and enticing drug targets for SARS-CoV-2 [4, 5].

Considering the urgent need for an effective therapeu-
tic agent for SARS-CoV-2 virus, several researchers have 
emphasized the importance of natural compounds [2, 3, 6]. 
Natural plant products have been used for generations in 
Traditional Chinese as well as Indian Ayurvedic Medicines 
as antiviral treatments. Moreover, natural compounds are 
also a fundamental source for a large number of modern 
drugs. An important natural compound worth mentioning is 
chloroquine and hydroxychloroquine derived from second-
ary metabolites of Cinchona tree which is under clinical trial 
and has shown potential anti SARS-CoV-2 properties [7]. 
Among the most readily accessible secondary metabolites 
are flavonoids found abundantly in citrus fruits and studies 
have demonstrated their antiviral activities [8, 9]. In fact, a 
few studies have discussed the importance of flavonoid as 
an antiviral agent against other respiratory diseases includ-
ing SARS-CoV-1 [10, 11]. Therefore, exploring the citrus 
flavonoids as inhibitors for SARS-CoV-2 can prove helpful 
in the search for an alternative first line treatment option.

The computational approaches under the urgent circum-
stances offer a great opportunity for testing the hypothesis of 
potential drug effect of the natural compounds. The present 
study intends to identify putative candidate compound as a 
potential therapeutic agent for COVID-19 by using compu-
tational approaches to screen natural citrus flavonoid com-
pounds as potential inhibitors of the main protease (Mpro) 
of SARS-CoV-2.

Materials and methods

Selection and preparation of the compound library 
of flavonoid compounds

A total of 44 flavonoids were collected from already pub-
lished articles to build the compound library [12]. The 
library of the flavonoids was selected based on the chemical 
skeleton C6-C3-C6.. Although the library of flavonoid com-
pounds appears to be considerably small, the compounds 
are chemically similar to the co-crystal inhibitor of SARS-
CoV-2 Mpro and thus increases the likelihood of finding 
potential inhibitor. The database of compound library was 
prepared and energy minimization was performed using the 
standard protocol of discovery studio 2018 (DS v 2018) [13].

Preparation of the target enzyme 
and selection of binding site

X-ray crystal structure of the enzyme main protease (Mpro), 
(PDB ID: 6M2N), co-crystalized with a flavonoid type 
(C6-C3-C6) inhibitor (3WL) was obtained from the Pro-
tein Data Bank websites [14, 15]. The target enzyme was 
cleaned, prepared and energy minimized using the standard 
protocol of DS v 2018 before the docking study [16]. The 
active binding site sphere with coordinates of X: − 33.0907, 
Y: − 63.8424, Z: 41.7832 and radius 9.2 Å was selected 
around the co-crystal inhibitor (3WL) present with the 
enzyme for docking.

Simulation‑based docking 
of the compounds library

The entire compounds library was docked with the target 
using simulation-based docking protocol CDocker of the DS 
v 2018 which uses a CHARMm-based molecular dynamics 
(MD) algorithm to dock compounds into the active binding 
site of a receptor [17]. After docking, the binding positions 
of the compounds were analysed and compared with the 
binding poses of the co-crystal inhibitor (3WL) of the target.

Flexible docking and binding free energy 
calculation

In the CDocker protocol, the target protein or enzyme is 
taken as a rigid structure which may affect the accuracy 
in posing and scoring of ligands in the docking process. 
However, in nature, proteins or enzymes are not rigid and 
hence protein flexibility is a major factor which influences 
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docking accuracy [18]. Therefore, we selected the best com-
pounds from the preliminary simulation-based docking for 
further analysis using ‘Flexible Docking’ protocol of DS v 
2018. This protocol allows for some receptor flexibility by 
the movement of side-chains of specified amino acids dur-
ing docking which allows the receptor to adapt to different 
ligands in an induced-fit model [19]. The protocol uses a 
combination of components from other protocols like Lib-
Dock and CDocker to perform the docking, and is based on 
methods within CHARMm to sample side-chain and ligand 
conformations. From the final refined poses, the highest 
scored complex as defined by the calculated CDocker energy 
(kcal/mol) was considered for analysis and for the calcula-
tion of binding free energy. The binding free energy of the 
docked complexes was analysed using ‘Calculate Binding 
Energies’ protocol of DS v 2018.

Toxicity analysis

The compounds selected from the flexible docking were 
further analysed for different types of toxicities like tumo-
rigenic, mutagenic, reproductive effective, irritant and for 
drug likeness using ORISIS Data Warrior 5.2.1 [20].

Molecular dynamics simulation study

The compounds which passed the toxicity analysis were then 
subjected to molecular dynamics simulation study to find 
their stability and to validate the docking study using DS 
v 2018. The receptor-ligand complexes of the compounds 
generated from the flexible docking study were taken for 
molecular dynamics study along with original X-ray crys-
tal structure of the target with the co-crystal inhibitor. The 
complexes were initially prepared to remove any error in 
the structure. The CHARMm36 force field was used in the 
parametrization process of both the protein and ligands. 
The parametrization of the protein and ligands was carried 
out using protein–ligand complexes generated from flexible 
docking analysis using the default assign force field tool 
of DS v 2018. These complexes were then solvated using 
explicit periodical boundary condition in water cubic box of 
size 10 Å x 10 Å and 0.15 M NaCl was added to neutralize 
the system. Subsequently, energy minimization (5000 steps 
steepest descent and 5000 steps conjugate gradient), heat-
ing (20 ps) and equilibration (500 ps) were performed using 
‘Standard Dynamic Cascade’ protocol of DS v 2018. Finally, 
the production was performed for 30 ns in NVT ensemble 
at 310 K for the whole protein–ligand complex where snap-
shots were saved every 2 ps. To assess the convergence of 
results after MD simulation, replicates of the analysis for 
30 ns were performed. For the electrostatics calculations, the 

particle mesh ewald (PME) method was used. To constrain 
bonds containing hydrogen, the SHAKE algorithm was used 
and the time step was 2 fs. Taking into account the starting 
structure as reference for the entire protein–ligand complex, 
root-mean-square deviation (RMSD), root mean square fluc-
tuation (RMSF), radius of gyration (ROG) were computed to 
evaluate receptor-ligand conformation changes and their sta-
bility. The RMSD, RMSF and ROG values were calculated 
using ‘Analyze Trajectory’ protocol of simulation tool of DS 
v 2018. Over the course of the simulation, the distance of 
different hydrogen bonds formed were also analysed. Finally, 
different non-bond interactions were also analysed from the 
average interaction structure of the receptor-ligand com-
plexes by comparing with the starting complexes [21, 22].

MM‑PBSA based binding free energy 
calculation

The MM-PBSA based calculation of binding free energy 
(ΔG) is one of the important parameters to estimate the 
binding affinity of a compound to a target [23]. It also pro-
vides fast and accurate prediction of absolute binding affinity 
of a compound within the active binding site of a target pro-
tein in the form of binding free energy which is important for 
thermodynamic stability and particular potency of the com-
pound in terms of inhibition or activation [24]. In this study, 
the binding free energies for each protein–ligand complex 
were calculated by using ‘Binding Free Energy–Single Tra-
jectory’ protocol of DS v 2020 with the MM-PBSA method. 
The binding free energies of all the generated conformations 
were calculated, and finally, the average binding free energy 
(ΔG) was determined for each protein–ligand complexes.

Predicted activity determination

The predicted activity of the compounds was determined 
by 3D-QSAR analysis. 3D-QSAR analysis gives an idea on 
the activities of the compounds based on the similarities of 
their structural or physicochemical properties [25]. A total of 
27 synthesized compounds reported as Mpro inhibitor were 
obtained from PostEra database along with their IC50 (µM) 
values to build the 3D-QSAR model [26]. The IC50 values of 
the compounds were converted in to pIC50 values by using 
an online tool before using in the study [27]. Initially, the 27 
compounds were aligned using molecular overlay method 
(50% electrostatic and 50% steric fields), which was then 
divided into training set (16 compounds) and test set (11 
compounds) based on molecular diversity in each group. 
The Grid BasedTemp model was generated using two probe 
types to calculate energy grids which indicates electrostatic 
and steric effects. The regression analysis was performed 
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by cross validated Partial Least Square (PLS) method of 
LOO (Leave-one-out). The pIC50 values served as dependant 
variables to build the model which validates the test set for 
stability and predictability.

Analysis of atom wise contributions 
towards binding affinity

Different atoms of a compound have individual contribu-
tions towards the binding affinity and stability in the active 
binding site of target protein. These properties can provide 
valuable information to select a compound as a lead candi-
date for further drug design and discovery process. The role 
of the specific atoms in the overall binding affinity of the 
best poses for the selected compounds along with co-crystal 
inhibitor 3WL was calculated using SeeSAR bioinformatics 
tool [28].

Results and discussion:

In the preliminary docking study, CDocker energy as well 
as the CDocker interaction energy were calculated and con-
sidered for the screening of the compounds. The CDocker 
energy of Discovery Studio (DS) v 2018 provides compara-
tively accurate information regarding the binding affinity of 
the compounds in the active site of the target proteins [17]. 
On the other hand, CDocker interaction energy provides the 

different non-bonded interactions within the binding site of 
the target site of the protein [29]. In this study, since the 
screening compounds were the flavonoid compounds from 
citrus species, the flavonoid like co-crystal ligand 3WL of 
Mpro was used as control for the entire study. Molecular 
docking revealed that 5 compounds out of the 44 selected 
Citrus species flavonoid compounds showed better CDocker 
energy and CDocker interaction energy than the co-crystal 
ligand 3WL (Table 1).

Considering the dynamic nature of the physiological con-
ditions, the best 5 compounds were allowed to redock with 
the target protein in a flexible mode. During the flexible 
docking, the residues of the binding site of the target protein 
were kept flexible. The flexible docking analysis of the best 
5 compounds also showed better CDocker energy as well as 
CDocker interaction energy (Table 2). The binding energy 
of the compounds to the target protein Mpro was calculated 
to understand the spontaneity of formation of drug-target/
ligand–receptor complex suggesting the stable drug-target 
complex. The calculated binding energy of the compounds 
showed lower binding energy in comparison to the control 
co-crystal inhibitor 3WL shown in Table 2.

In the present study, the top 5 compounds formed higher 
number of H-bonds with the target protein than the co-crys-
tal inhibitor 3WL. This may suggest that the test compounds 
have a higher tolerability against target protein putative 
mutations than 3WL [30]. The interaction and the number 
of H-bonds formed for the 5 screened compounds with Mpro 
are shown in Fig. 1.

From Fig. 1, it was observed that the compounds Taxifo-
lin, Eriodictyol, Luteolin and Quercetin formed 4 or more 
H-bonds with the active site of SARS-CoV-2 Mpro, whereas 
compound Isoscutellarein and the co-crystal inhibitor 3WL 
formed 2 H-bonds with the target protein. Analysing the 
residues involved in interactions between the compounds 
and Mpro, showed that all the compounds interacted with 
the two important catalytic residues His41 and Cys145 of 

Table 1   Preliminary simulation-based docking results of the top five 
flavonoid compounds

Compound code Compound 
name

CDocker 
Energy (kcal/
mol)

CDocker Inter-
action Energy 
(kcal/mol)

3WL -  − 30.6785  − 31.338
CF3 Taxifolin  − 30.8173  − 36.7392
CF5 Eriodictyol  − 32.5776  − 37.1241
CF7 Isoscutellarein  − 33.0279  − 36.7776
CF8 Luteolin  − 32.9575  − 36.1835
CF10 Quercetin  − 33.8277  − 37.0433

Table 2   Flexible docking 
binding energy of the best 
five flavonoid compounds as 
compared to co-crystal inhibitor

Compound CDocker energy 
(kcal/mol)

CDocker interaction 
energy (kcal/mol)

LibDock Score No of 
H-Bond

Binding 
energy (kcal/
mol)

3WL  − 34.8212  − 35.2188 102.348 2  − 24.9866
Quercetin  − 39.6003  − 42.9988 102.055 4  − 31.5229
Taxifolin  − 38.3342  − 45.9748 109.909 5  − 38.6097
Isoscutellarein  − 37.2348  − 38.4106 92.9587 2  − 25.8374
Eriodictyol  − 37.1527  − 42.5989 97.6221 4  − 39.0123
Luteolin  − 36.3285  − 41.5773 104.515 6  − 35.0685

Fig. 1   Docking interaction of a 3WL, b Taxifolin (CF3), c Eriodic-
tyol (CF5), d Isoscutellarein (CF7), e Luteolin (CF8) and F Querce-
tin (CF10) with Mpro. The green dashed line indicates the H-bonds 
between the ligands and the interacting residues of Mpro

◂
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the active sites of Mpro. These two residues are present in 
the catalytic domain of SARS-CoV-2 Mpro and actively par-
ticipate in the catalytic activities of Mpro. Hence, binding of 
the flavonoid compounds to these residues may reduce the 
catalytic activities of Mpro which eventually will lead to the 
reduction of viral replication.

The 5 compounds showing the best results in terms of 
CDocker energy, CDocker interaction energy, calculated 
binding energy and number of H-bonds were then subjected 
for the assessment of drug likeness and assessment of differ-
ent toxicity parameters. It was observed that 3 compounds, 
namely Taxifolin, Eriodictyol and Luteolin did not show any 
toxicity against the toxicity parameters used in the study. On 
the other hand, the compounds Isoscutellarein and Quercetin 
showed the presence of mutagenic properties. Quercetin also 
showed the presence of tumorigenic property. The results of 
toxicity prediction and the drug likeness property analysis 
are shown in Table 3. Among all the screened compounds, 
Taxifolin possessed the highest drug likeliness property fol-
lowed by Isoscutellarein and Luteolin. Based on the training 
dataset used by the ORISIS Data Warrior, the compounds 
with higher or positive drug likeliness values are considered 
as good drug candidates. Since the compounds Isoscutel-
larein and Quercetin showed the presence of toxic effects, 
we did not consider these compounds for further analysis. 
The non-toxic compounds, namely Taxifolin, Eriodictyol 
and Luteolin were further subjected to molecular dynamics 
simulation studies.

Molecular dynamics simulation study was performed to 
understand how the ligands bind to the receptor by mim-
icking in vitro and in vivo experiments [4]. Thereby, the 
RMSD, RMSF and ROG of the Mpro-ligand complexes were 
calculated over the simulation period of 30 ns and compared 
with the control (Mpro-3WL complex) to observe the stabil-
ity of the complexes. To calculate the RMSD, RMSF and 
ROG of the complexes, the whole protein–ligand complexes 
were used. After completion of simulation, the RMSD plots 
for all the compounds were analyzed where it was observed 
that Mpro-3WL and Mpro-CF5 (Eriodictyol) had almost 
similar deviations with control complex (Mpro-3WL) within 
the simulation period. However, Mpro-CF3 (Taxifolin) and 
Mpro-CF8 (Luteolin) had comparatively higher deviation 

than Mpro-3WL; where Mpro-CF8 took more time (almost 
10 ns) to reach plateau state (Fig. 2A). The fluctuations of 
the individual residues within the simulation period were 
plotted where the RMSF of the residues for the Mpro-3WL 
and Mpro-CF5 had almost similar pattern with minimum 
deviations from each other. For the complex Mpro-CF3 and 
Mpro-CF8, there were significant deviations which may 
indicate that the presence of ligands influenced the stabil-
ity of the enzyme Mpro and changed its dynamic behav-
iour. Notably, the replicate analysis of the protein–ligand 
complexes showed similar RMSD deviations indicating a 
convergence of results. Comparing the RMSD of the com-
plexes, Mpro-CF8 showed fluctuations all over the regions. 
Mpro-CF3 showed considerable fluctuations within residue 
248 to 256 (Fig. 2B). These findings were also supported 
by calculated radius of gyration (ROG) for the Mpro-ligand 
complexes (Fig. 2C).

In this study, we further analysed the interaction between 
the compounds with Mpro and checked the formation of 
H-bonds after 30 ns MD simulation. The interaction pat-
tern of the compounds after 30 ns MD simulation is shown 
in Fig. 3. After 30 ns MD simulation, the co-crystal ligand 
3WL formed 4 H-bonds, whereas compounds Taxifolinand 
Eriodictyol formed 7 and 4 H-bonds respectively with the 
target protein. Luteolin formed 3 H-bonds with the residues 
of the active site of SARS-CoV-2 Mpro after MD simulation 
for 30 ns. Although all compounds formed H-bonds with 
the catalytic residues i.e. His41 and Cys145 as observed 
during molecular docking, but after 30 ns simulation only 
Taxifolin interacted with these residues forming H-bonds. 
The co-crystal ligand 3WL formed weak interaction with 
Cys145 after 30 ns of MD simulation.

The structural conformations of the protein–ligand com-
plexes before and after MD simulation were also observed 
by superpositiong the complexes and are depicted in Fig. 4.

In the MD simulation analysis, we analysed the differ-
ent H-bonds formed within the active site of the target pro-
teins with the flavonoid compounds during the process of 
simulation upto 30 ns. The number of H-bonds formed and 
their distances within the simulation period for each con-
formation were generated (Fig. 5). In Mpro-3WL complex 
total 5 hydrogen bonds were found, where 1 H-bond with 

Table 3   Toxicity and drug 
likeness analysis

Compound Drug likeness Mutagenic Tumorigenic Reproductive 
Effective

Irritant

3WL 0.28194 None None None None
Taxifolin 0.44477 None None None None
Eriodictyol  − 0.22006 None None None None
Isoscutellarein 0.28194 High None None None
Luteolin 0.28194 None None None None
Quercetin  − 0.082832 High High None None



Molecular Diversity	

1 3

Glu166 residue showed almost consistent average distance 
with low deviation. However, the other 4 H-bonds with 
Thr190, Asn142 and Glu166 initially had very large average 
distance but after approximately 18 ns it was reduced and 
stabilized. In Mpro-CF3 complex 7 H-bonds were observed 
where the H-bond with Leu50 residue showed substantial 
deviations around 10–20 ns and subsequently stabilized by 
the end of the simulation. In Mpro-CF5 complex 4 H-bonds 
were observed among which 2 H-bonds with Asp48 residue 
remained stable throughout the simulation. The H-bond with 

Ser46 residue stabilized within 4 ns of simulation, while 
the H-bond with Glu166 residue remained highly unstable 
with considerable fluctuation of distances throughout the 
simulation. In Mpro-CF8 complex 3 H-bonds were formed 
and the distance of bond with Asn119 varied throughout 
the simulation. The bond with Asp48 showed deviation 
around 18–26 ns and then reverted to its previous state. The 
distance for the H-bond with Ser46 gradually decreased to 
less than 5 Å. The 2D interaction generated for the com-
plexes before and after simulation showed that the number 

Fig. 2   a Root mean square 
deviation of the receptor-ligand 
complexes; b Root mean square 
fluctuations of the residues 
of receptor-ligand complexes 
and c Radius of gyrations of 
the receptor-ligand complexes 
within the 30 ns simulation. 
In all the cases the complex 
Mpro-3WL is represented by 
blue line, Mpro-CF3 is repre-
sented by green line, Mpro-CF5 
is represented by yellow line 
and Mpro-CF8 is represented by 
red line
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of H-bonds formed increased for Mpro-3WL and Mpro-CF3. 
For Mpro-CF5, the number of H-bonds remained same but 
the interacting residues had changed. But for Mpro-CF8 the 
number of H-bonds decreased after simulation.

During MD simulation analysis, the binding free ener-
gies (ΔG) of the protein–ligand complexes were calculated 
upto 30 ns using MM-PBSA based method. From the result, 
the average ΔG of the Mpro-3WL complex was found to 
be − 51.1666 kcal/mol. The average ΔG of the Mpro-CF3, 
Mpro-CF5 and Mpro-CF8 were found to be − 60.3367 kcal/
mol, − 68.3025 kcal/mol and − 55.7587 kcal/mol, respec-
tively. It has been observed from the MM-PBSA analysis 
that the complexes formed between the flavonoids and the 
target, possessed lower ΔG than the complex of receptor-
co crystal ligand. This indicates the formation of stable 

complexes with spontaneous interaction by the test ligands 
in the active binding pocket. The binding free energies (ΔG) 
of protein–ligand complexes during the MD simulation 
period are shown in Fig. 6.

The predicted activity (IC50) of the compounds was deter-
mined with the help of 3D-QSAR analysis. As the IC50 
value of 3WL has not yet been reported, the IC50 value of 
3WL was predicted by generating 3D-QSAR model from 
the inhibitor deposited in PostEra website [26]. To calculate 
the energy potential in 3D-QSAR method, 3 dimensional 
structures of a set of compounds were used. The calculated 
potential energies were then used as descriptors to build the 
3D-QSAR model to corelate the 3D-structures and their 
biological activities. The generated QSAR model gives the 
information on correlation between the molecular field and 

Fig. 3   Interaction of a 3WL, b Taxifolin, c Eriodictyol and d Luteolin with Mpro after MD simulation for 30 ns. The green dashed line indicates 
the H-bonds between the ligands and the interacting residues of Mpro
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the biological activities of the compounds [31]. In this study, 
the predicted activity i.e. IC50 of the compounds as well 
as control were determined by using the following linear 
equation.

where NEP: the number of descriptors of electrostatic poten-
tial (EP); CEP(i): model coefficient for electrostatic poten-
tial descriptor i; VEP: value of electrostatic potential on a 
grid point; NVDW: number of descriptors of van der Waals 
(VDW) interaction: CVDW(i): model coefficient for VDW 
descriptor i; VVDW: van der Waals interaction energy on 
a grid point.

The linear plot of the training set and the test set are 
depicted in Fig. 7. The determined R2 value for training 

Activity (predicted) =

NEP
∑

i=1

CEP(i)VEP(i) +

NVDW
∑

i=1

CVDW(i)VVDW(i)

set was found to be 0.912 and for test set was found to 
be 0.846 during validation. From the 3D-QSAR analy-
sis, the predicted IC50 value of 3WL was observed to be 
5.98 μM, whereas the compound Taxifolin was observed to 
be 9.63 μM followed by Luteolin (14.47 μM) and Eriodic-
tyol (16.08 μM). As the actual IC50 value of 3WL has not 
been reported yet, the predicted IC50 value will not give the 
actual idea of its minimum inhibitory concentration. Thus, 
the complexes were considered for further SeeSAR analysis 
to assess the role of individual atoms towards the binding 
affinity.

To further assess the binding affinity of 3WL and Taxifo-
lin with Mpro before and after 30 ns MD simulation, HYDE 
(Hydrogen bonds and Dehydration) analysis was performed 
using SeeSAR of BiosolveIT [28]. HYDE analysis con-
sistently designates hydrogen bonding between ligand and 

Fig. 4   Superposition of the protein ligand complex of a Mpro-3WL, b 
Mpro-CF3, c Mpro-CF5 and d Mpro-CF8. The green colour complexes 
represent the protein–ligand complexes before MD simulation and red 

colour complexes represent the protein–ligand complexes after 30 ns 
MD simulation
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receptor, hydrophobic effect as well as desolvation. HYDE 
also helps in predicting the particular region of the com-
plex which undergoes favourable and unfavourable bind-
ing ligand receptor. The HYDE scoring determined the 
Gibb’s free energy by calculating the difference between 

bonded and unbonded states of the complex [32]. The spe-
cific atoms which were favourable for good binding affinity 
(dark green sphere) and their individual HYDE values for 
the best compound Taxifolin and the co-crystal inhibitor 
3WL in both before and after MD simulation, are shown 

Fig. 5   Distance of different 
hydrogen bonds formed within 
the simulation period for a 
3WL; b Taxifolin, c Eriodictyol 
and d Luteolin
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in Fig. 8. Identification of the role of atoms present in the 
ligands is crucial in predicting overall binding affinity or 
interactions with the target sites of the protein. From Fig. 8a, 
it was observed that in case of 3WL (5,6,7‐trihydroxy‐2‐
phenyl‐4H‐chromen‐4‐one), before MD simulation, the phe-
nyl ring at 2nd position had major contributions towards 
the overall HYDE score (kcal/mol). But mainly the oxygen 
atom of the 6-hydroxyl group, carbon atom of the carbonyl 
group of 4 position and oxygen atom of the 1 position of 
the bicyclic ring system (with red coronas) had negative 

impact on the overall binding affinity of 3WL. Similarly, in 
case of Taxifolin ((2R,3S)‐2‐(3,4‐dihydroxyphenyl)‐3,5,7‐
trihydroxy‐3,4‐dihydro‐2H‐1‐benzopyran‐4‐one), before 
MD simulation, the oxygen atom at the 1 position and the 
oxygen atom of the hydroxyl group at 3 position had nega-
tive impact towards the binding affinity of the compound. 
Moreover, the carbon atom at 7 position and the oxygen 
atom of the hydroxyl group at 7 position also demonstrated 
negative impact on the binding affinity. On the other hand, 
the atoms of the 3,4 dihydroxyphenyl group at 2 position of 
the bicyclic ring showed positive contributions towards the 
overall binding affinity of the molecule. In the bicyclic ring, 
the oxygen atom of the ketone group and carbon atom at 
the 6 and 8 position had positive effect towards the binding 
affinity of the molecule (Fig. 8b).

HYDE analysis was performed for the complexes after 
MD simulation also and represented in (Fig. 8c, d). From 
Fig. 8c, it was observed that in case of 3WL (5,6,7‐trihy-
droxy‐2‐phenyl‐4H‐chromen‐4‐one), the phenyl ring at sec-
ond position had major contributions towards the overall 
HYDE score (kcal/mol). Further, the carbon atoms at 2 and 
3 positions, and oxygen atoms of the hydroxyl groups at 
5, 6 and 7 position had also showed positive contributions 
towards the overall binding affinity. However, the oxygen 
atom of the carbonyl group at 4 position (with red corona) 
was seen to have negative impact on the overall binding 
affinity of 3WL. Similarly, in case of Taxifolin ((2R,3S)‐2‐
(3,4‐dihydroxyphenyl)‐3,5,7‐trihydroxy‐3,4‐dihydro‐2H‐1‐
benzopyran‐4‐one), after MD simulation, the oxygen atom 
at the 1 position and the oxygen atom of the hydroxyl group 
at 3 and 5 position had negative impact towards the binding 
affinity of the compound. The carbon atom at 6 position 
of the 3,4-dihydroxyphenyl cyclic ring system present at 2 
position, also had a major negative impact on the binding 
affinity. On the other hand, the carbon atoms of the 3,4-dihy-
droxyphenyl group at 2 and 5 position, and oxygen atoms 

Fig. 6   Flucutation of binding 
free energies (ΔG) of pro-
tein–ligand complexes during 
the MD simulation period. 
The blue line represents the 
complex Mpro-3WL, brown 
line represents Mpro-CF3, grey 
line represents Mpro-CF5 and 
yellow line represents Mpro-CF8 
complexes

Fig. 7:   3D-QSAR plot of a training set and b test set
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Fig. 8   Visualization of binding 
of Mpro with a 3WL and b 
Taxifolin before MD simulation 
and c 3WL and d Taxifolin after 
MD simulation in SeeSAR with 
quantification of HYDE of the 
important non-hydrogen atoms 
which contribute in binding 
affinities
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of the hydroxyl groups at 3 and 4 positions showed positive 
contributions towards the overall binding affinity of the mol-
ecule. From the bicyclic ring, the oxygen atom of the ketone 
group and carbon atom at the 3, 4a and 6 position, and oxy-
gen atom of the hydroxyl group at 7 position had positive 
effect towards the binding affinity of the molecule (Fig. 8d).

The ranges of binding affinity of Taxifolin and co-crystal 
inhibitor 3WL were also calculated before and after MD 
simulation and shown in Table 4. From the results, it was 
found that before MD simulation, Taxifolin had less binding 
affinity towards the target protein Mpro due to the major neg-
ative impact governed by the orientation of oxygen atom at 
1 position and oxygen atom of the hydrpxyl group at 3 posi-
tion. However, in case of complexes after MD simulation, 
Taxifolin showed better binding affinity towards the target 
protein Mpro than the co-crystal ligand 3WL. This suggests 
that during the course of reaction, Taxifolin possesses better 
binding affinity towards Mpro of SARS-CoV-2.

Taxifolin is a widely distributed natural flavonoid and 
waste material of forest industry offers an economically 
viable source for its extraction. Taxifolin has earlier been 
reported for its antiviral effects against coxsackievirus B and 
antiradical activities [33, 34]. We believe that no study has 
been undertaken concerning taxifolin’s potential inhibitory 
activities against respiratory viruses. It is worth mentioning 
that our study corroborates a recently published report of 
potential activity of taxifolin against the main protease of 
SARS-CoV-2 [35].

Conclusion

In this study, we screened flavonoid compounds of citrus 
species for their activity against SARS-CoV-2 targeting 
Mpro of the virus. From the computational analysis, we 
conclude that Taxifolin is the best druglike compound 
among all the selected flavonoids of citrus species with-
out toxicity. Taxifolin binds to the target protein with 
comparatively better binding affinity than the co-crystal 
flavonoid like inhibitor 3WL. It forms H-bonds with two 
important catalytic residues of SARS-CoV-2 Mpro after 
molecular docking and remains stable till the completion 
of MD simulation for 30 ns. The results of the study sug-
gest its potential inhibitory activity against SARS-CoV-2 

Mpro with IC50 value 9.63 μM. The substantial effect of 
Taxifolin against the virus observed during the in silico 
study may be further validated with invitro and invivo 
experiments for clinical use of the compound. The pre-
sent study will help in future endeavours for discovering 
a potential and effective treatment for COVID-19.
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